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ABSTRACT

Understanding the human motor control strategy during physical interaction tasks 

is crucial for developing future robots for physical human-robot interaction (pHRI). 

Effective pHRI depends on humans communicating their intentions for movement with 

robots. In physical human-human interaction (pHHI), small interaction forces are known 

to convey their intent between the partners. It is speculated that small interaction forces 

contain significant information to convey the movement intention of pHHI. However, the 

mechanism underlying this interaction strategy is largely unknown. Hence, the aim of this 

work was to investigate what affects humans’ sensitivity to the interaction forces. The 

hypothesis was that small interaction forces are sensed through the movement of the arm 

and result in proprioceptive signals. A pHRI setup was used to provide small interaction 

forces to the seated participants’ hands, and the participants were asked to identify the 

direction of the push while blindfolded. The result showed that participants’ abilities to 

correctly report the direction of the small interaction force were lower with low 

interaction force and a high level of muscle contraction. In particular, the sensitivity to 

the interaction force direction increased with the radial displacement of the participant’s 

hand from the initial position and when the misalignment of human arm movement with 

respect to the force direction was lower. The estimated stiffness of the arm varied with 

the level of muscle contraction and robot interaction force. These results suggested that 

humans’ may benefit from a lower arm stiffness to detect small interaction forces. The 

outcomes of this work will help future researchers tailor the development of robotic 

systems for effective pHRI.
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1. INTRODUCTION

1.1. OVERVIEW

Conventional robots were introduced for industrial purposes in 1980 and are used 

in different automation applications related to welding, painting, assembly, or production 

processes.1-3 In medical applications, robots were first used in the year 1985.4 The 

utilization and applications of robots have widely increased due to the technological 

development of robots and robotic systems.5-7 In most applications, they are used as a 

preprogrammed systems to perform predefined tasks in a predictable environment.8,9 

They do not need continuous maintenance or operation from humans. Figure 1.1 shows a 

conventional robot that performs predefined tasks and an interactive robot that can help 

humans during their interaction tasks.

Figure 1.1. A conventional robot that performs predefined tasks and an interactive robot 
that can help humans during their interaction tasks.10

In some applications, there are cases where humans need to interact with robots 

continuously on a need basis, especially for neurological patients and blind people.11-13 

These people require support from human caregivers during their movement tasks
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because they cannot move with their own energy or visual feedback. However, the 

current and projected number of human caregivers is not enough to support those in need. 

Additionally, human caregivers need a significant amount of physical demands to provide 

support for neurological patients. They need specific training to serve and support 

elderly, neurological patients, and disabled people. To ensure a high-quality life for these 

people, the demand for nursing is increasing globally. The field of nursing was projected 

to increase approximately 15% from 2016 to 2020; that is higher than the scope of 

occupation.14 Oftentimes, nurses must stretch, stand, run, bend, and lift when providing 

support to patients and elderly people. Consequently, human caregivers may suffer from 

muscle injuries or physical burnout on a regular basis.15 A smaller number of available 

human workers, higher costs related to caregivers, and significant developments of 

robotic technologies accelerate the use and higher demand of humanlike interactive 

robots.16,17 Hence, as an alternative, humanlike interactive robots can address the issue 

for aging and disabled people, including rehabilitation and physical therapy 

circumstances.18-20 The expectation for robots is to provide support to disabled and 

healthy people to perform interaction tasks with humans such as guiding the elderly or 

patients to walk across a room at any time when a human caregiver is not available. 

Interactive robots can also help reduce human fatigue, augmentation of power, and 

improve the quality of life, particularly for elderly people.21,22 In addition, exoskeleton- 

type robots can help patients suffering from stroke, paralysis, or Parkinson’s disease to 

perform different types of tasks.23,24 All these diseases are crucial for medical 

applications, hence interactive robots are significant to humans who need support from 

robots for their movement tasks. These tasks may be performed with proper safety
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measures and fewer physical demands using interactive robots.25,26 Interactive robots may 

provide effective and intuitive interaction for tasks during physical human-robot 

interaction (pHRI) for healthcare, industrial applications, or entertainment.27,28 Therefore, 

humanlike interactive robots have the potential to provide support and freedom in the 

applications of rehabilitation and physical therapy for neurological patients and elderly 

people.

The main factor for developing an interactive robot is to understand the 

movement intentions of humans that are mostly conveyed through physical couplings, 

such as human arm contact during effective physical human-robot interaction (pHRI).29 

The target users of these robots are elderly, disabled, and neurological patients who may 

need to convey their movement intentions without communicating verbally.30,31 During 

non-verbal communication, humans may also expect safe and confident approaches that 

may be possible for human caregivers but may difficult for robot caregivers. In practice, 

humans are able to convey their movement intentions with another human through arm- 

to-arm contact during physical human-human interactions (pHHI). Hence, to develop an 

interactive robot, it is necessary to understand the underlying mechanism of conveying 

movement intentions between two humans where interaction forces are applied at the 

point of physical couplings, such as arm-to-arm contact. Indeed, these motor 

communications are generally conveyed through small interaction forces.32,33 However, 

the encoded information for the interaction forces is not clear yet. Humans nonverbally 

communicate with other humans through physical arm contact and by the application of 

interaction forces during different interaction tasks, including walking, weight carrying, 

handshaking, etc. If a human can sense the direction of interaction force, then that human
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may convey the movement intentions even in an unknown environment. Therefore, the 

sensitivity of interaction forces at the physical coupling point is the driving factor for 

effective pHHI and pHRI. The higher the sensitivity of interaction force, the better a 

human can convey the movement intentions with another human or robot.32

To this end, the aim of this research project was to identify factors that can affect 

the sensitivity of small interaction forces. The goal was to identify modulation strategies 

for stiffness of the human arm for effective motor communication. The outcome of this 

research project will help to develop an effective interactive robot for natural, humanlike, 

and intuitive pHRI by identifying the relationship between human arm stiffness and small 

interaction forces.

1.2. PROBLEM STATEMENT

The main focus was to identify the factors that affect the sensitivity of a human 

arm to the applied interaction forces during effective pHRI. In this research, humans held 

the arm of a haptic robot, and the robot pushed in four different directions to provide 

interaction forces. Without visual feedback, human participants were asked to detect the 

direction of small interaction forces while maintaining a specific level of arm stiffness 

and arm posture. There was no verbal or any other communication from the environment, 

except the handholding of the robot arm with the human arm. How human participants 

then sensed the direction of applied small interaction forces was one of the main problem 

statements for this research.

It was assumed that the mechanoreceptors at the point of physical arm contact 

during human-robot or human-human interactions helped to sense the direction of small

4
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interaction forces. However, when high grip forces are required for stable physical arm 

contact between two humans or one human and a robot, mechanoreceptors may not sense 

the directions of small interaction forces. This is because, at higher grip forces, lower 

variations of small interaction forces could be below the specified range of the Weber 

fraction (<10%), which makes it difficult to sense the direction of the applied forces.34 

For this condition, factors that actually help humans identify the direction of small 

interaction forces were not identified, although they are crucial for effective pHRI. 

Generally, humans reduce their grip forces to improve their motor communication 

towards small interaction forces, while reducing their reliable arm contact with a human 

or a robot partner. Current research aims to find these factors necessary for small 

interaction to be effective and intuitive for human-robot interaction. In this research, 

humans followed the directions from small interaction forces provided by the robot arm. 

Hence, humans were followers, and robots led.

1.3. TECHNOLOGICAL FRAMEWORK

In this research, seated human participants held the robot arms and traversed a 2D 

motion trajectory through the application of small interaction forces. For physical 

interaction with a robot, the main factor is to make the robot-provided interaction force as 

human-like as possible. In this work, the interaction force was increased slowly to make 

it humanlike to avoid stretch reflex.35

To find the factors affecting small interaction forces, it was required to vary 

human arm stiffness or grip forces during human-human or human-robot arm contact 

interactions. As for lower arm stiffness, proprioceptors of human arm muscles and

5
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tendons may be used to identify the direction of small interaction forces through the 

kinematic displacements of the arm.36 Low arm stiffness helps create sufficient arm 

movement allowing sufficient length changes to arm muscles or tendons above the 

specified range provided by Weber fraction. In this way, small interaction forces were 

sensed through the muscle spindle or Golgi tendon organs.37 Therefore, to modulate the 

stiffness of the human arm and find the relationship with robot-provided small interaction 

forces, participants were asked to grip the haptic robot arm, while maintaining a specific 

level of maximum voluntary contraction (MVC) of arm muscles electromyography 

(EMG) signal. The maximum voluntary contraction (MVC) of forearm flexor muscles 

were measured using single-channel electromyography (Muscle SpikerShield Bundle 

model #V2.61, Backyard Brains, Inc. MI, USA). Figure 1.2 illustrates the experimental 

set-up of a single-channel muscle spiker shield bundle for measuring the maximum 

voluntary contraction (MVC) of forearm muscle groups. In addition, during the 

experiment, the human participants maintained a specific arm posture.

6

(a) (b) (c)

Figure 1.2. Experimental set-up of single-channel muscle spiker shield bundle for 
measuring the maximum voluntary contraction (MVC) of forearm muscle groups.
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Human participants were verbally instructed to maintain two different levels 

(high: 70~80% and low: 0~20%) of maximum voluntary contraction (MVC) for the 

forearm flexor muscle group. In high-level maximum voluntary contraction (70~80%), 

participants were required to hold the haptic robot arm with a large handgrip force, so the 

electromyography (EMG) signal to the forearm flexor muscle group registered 70~80% 

on the computer screen. Participants could adjust the electromyography (EMG) signal for 

the level of maximum voluntary contraction (MVC) regarding the forearm flexor muscle 

group before starting a trial. However, participants had to maintain the required level of 

MVC, and the experiment team instructed them verbally if any modifications were 

needed. In contrast, for low-level maximum voluntary contractions (0~20%), participants 

held the haptic robot arm with a lower handgrip force, so the electromyography (EMG) 

signal of the forearm flexor muscle group registered 0~20% on the computer screen. The 

lower level of MVC was comfortable for humans, but higher levels of MVC may create 

muscle fatigue. As a consequence, there were no more than four consecutive higher 

levels (70~80%) MVC trials during the experiment where a ~1-minute mandatory break 

was provided.

In each trial, participants were not informed about the levels of interaction force 

intensity the robot applied. In this research, two different levels of interaction forces were 

applied by a haptic robot (Phantom Premium 1.5/6 DOF-HF, 3D Systems, Rock Hill, SC, 

USA). Participants were asked to identify the force directions (+Z: towards the 

participants, -Z: away from the participants. +X: right side of the participants, and -X: 

left side of the participants) without any visual feedback, and while maintaining the 

specific level of MVC and prescribed arm posture. They were allowed to provide their

7
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responses at any time during each ~5-seconds trial period for the application of robot 

interaction force. In this research, the responses were considered correct if participants 

were able to detect the exact direction of the applied force, considered incorrect if they 

made mistakes identifying the direction of the interaction force, and noted as no-response 

if they were not able to tell the direction of force or if they responded after ~5-seconds 

trial. In this way, each participant performed a total of 96 trials where there were 6 push 

interaction force trials in each of the four specified directions (+Z, -Z, +X,-X). Therefore, 

for 20 participants, there were a total of 1920 trials analyzed in the research to identify 

the factors affecting the small interaction forces. In addition, the maximum radial 

displacement of the human arm from the initial position and stiffness of the human arm 

was calculated from the robot-provided interaction forces. Finally, by analyzing 

participants’ responses (correct, incorrect, no-response), maximum radial displacements, 

arm stiffness levels, and angular displacements between applied interaction forces and 

arm displacements from initial positions, factors affecting the sensitivity of small 

interaction forces were identified.

1.4. HYPOTHESIS OF THIS RESEARCH

Considering the ongoing necessity to identify the factors affecting the sensitivity 

to small interaction forces and technological framework, the major hypotheses of this 

research were written as follows:

Hypothesis 1: Small interaction force is felt through the changes in the kinematic 

displacement of arm muscles and tendons.

8
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Hypothesis 2: Alignment of the human arms with the direction of applied 

interaction forces may affect the accuracy of the direction of small interaction forces 

during pHHI and pHRI.

Hypothesis 3: Humans may decrease the stiffness of their arms to increase the 

sensitivity to small interaction forces.
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PAPER

I. HUMAN ARM SENSITIVITY TO SMALL INTERACTION FORCES 
DEPENDS ON THE DISPLACEMENT OF THE ARM

ABSTRACT

Understanding the human motor control strategy during physical interaction tasks 

is crucial for developing future robots for physical human-robot interaction (pHRI). In 

physical human-human interaction (pHHI), small interaction forces are known to convey 

their intent between the partners for effective motor communication. The aim of this 

work is to investigate what affects the human’s sensitivity to the externally applied 

interaction forces. The hypothesis is that the small interaction forces are sensed through 

the movement of the arm and the resulting proprioceptive signals. A pHRI setup was 

used to provide small interaction forces to the hand of seated participants in one of four 

directions, while the participants were asked to identify the direction of the push while 

blindfolded. The result shows that participants’ ability to correctly report the direction of 

the interaction force was lower with low interaction force as well as with high muscle 

contraction. The sensitivity to the interaction force direction increased with the radial 

displacement of the participant’s hand from the initial position and the further they 

moved the more correct their responses were. It was also observed that the estimated 

stiffness of the arm varies with the level of muscle contraction and robot interaction

force.
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1. INTRODUCTION

Beyond traditional robots that perform isolated tasks away from human 

operators,1-4 future robots are expected to be physically closer to the users and perform 

interactive tasks.5-8 In particular, robots that can physically interact with humans through 

direct contact have the potential to assist the human workforce in various scenarios, such 

as in healthcare, manufacturing, or education.9-12 For example, the foreseen shortage of 

physical therapists and nurses amplifies the necessity for the development of effective 

and intuitive physical Human-Robot Interaction (pHRI). Robots may provide physical 

assistance to patients like human therapists would for effective movement assistance and 

rehabilitation.10-15

In order to advance pHRI, however, it is crucial to first understand the underlying 

mechanism of effective physical interaction from the perspective of human users.16 

Indeed, humans are experts of physical human-human interaction (pHHI) such as while 

hand-shaking,17, 18 walking together,16, 19, 20 or jointly carrying loads.21, 22 In many pHHI 

tasks, humans coordinate their movements together, not through verbal communication or 

visual feedback, but through the interaction forces through their arms and hands.20 This 

physical communication between partners can lead to improved performance in the 

absence of explicitly shared motor goals,19, 23-27 a distinction of skill levels,20 or roles,28 or 

even motor adaptation.29-31 These information-carrying interaction forces are typically 

20N or less,20, 32 are usually kept below 10N,33, 34 and can sometimes be as low as 1N.35 It 

would then be required of the humans in physical interaction tasks to be sensitive to the 

small changes in the interaction forces for better motor communication with the partner.
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How, then, do human partners remain sensitive to small interaction forces during 

physical interaction tasks? One possibility is through the mechanoreceptors distributed at 

the site of the physical coupling, typically through holding of hands.16, 19, 23, 25 However, 

these receptors may not be suitable for detecting subtle changes in the interaction forces 

due to the high preload of grip forces that is crucial to maintain a stable physical 

coupling.36, 37 That is, the small changes in the interaction forces could be below the 

Weber fraction (< 10 %) of the pre-existing stimuli on the pressor receptors (grip force), 

making them unreliable for detecting interaction forces.38, 39 Humans will have to loosen 

their grip for reliable motor communication at the cost of unreliable physical coupling.

Alternatively, proprioceptors on muscles, tendons, and joints may help detect the 

small interaction forces through the resulting kinematic displacements of the arm.40, 41 

The interaction force at the hand will create the corresponding movement of the upper 

and lower arm, which then creates length changes in the muscles and tendons that are 

sensed by muscle spindles and/or Golgi tendon organs (GTOs).42, 43 In certain interaction 

tasks where there is little arm movement (such as in20), small movements can create 

muscle length changes above the Weber fraction. In this view, small changes in the 

interaction forces may be detected by the proprioceptors, as long as the arm stiffness is 

low enough to allow detectable movement in response to the small interaction force.

To this end, this work is aimed at investigating the physical interaction strategy in 

humans for effective motor communication through small interaction forces. In 

particular, this work investigates the effect of the state of the arm in the sensitivity to the 

information provided by the interaction force from an external source. The hypothesis is 

that humans are more sensitive to the direction of the subtle push on their palm when the
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arm is displaced more as a consequence of the push. Supporting observations will imply 

the presence of a specific pHHI/pHRI strategy that the humans may modulate their arm 

stiffness to improve sensitivity to small interaction forces.

2. MATERIALS AND METHODS

2.1. EXPERIMENTAL SETUP

20 healthy young adult subjects (19 males and 1 female), 18 to 35 years of age 

(22.1±4.025 years) without a self-reported history of neuromuscular injuries or disorders 

participated in this study. All participants reported themselves to be right-handed. The 

experimental protocol and procedure were approved and in accordance with relevant 

guidelines and regulations of the institutional review board (IRB) of the University of 

Missouri. All participants/subjects gave their written informed consent and were free to 

withdraw their participation at any time. The hypothesis and the experiment design are 

preregistered in the open science foundation (OSF: osf.io/qr785).

The experiment involved externally applied interaction forces to the hand of a 

seated participant as he/she relaxed or contracted their lower arm muscles. All 

participants were seated in a rigid chair to keep their back against the chair at all times. 

Shoulder straps were used to help maintain their posture as depicted in Figures 1(a) and 

1(b).44 Using their right hand, participants grabbed the handle of a haptic robot (Phantom 

Premium 1.5/6 DOF-HF, 3D Systems, Rock Hill, SC, USA) in front of them as shown in 

Figure 1(b). The right arm was posed such that the distance from their sternum to the 

right hand was approximately 30% of their arm length, with the shoulder abduction angle
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of ~71°, shoulder horizontal flexion of ~45°, elbow flexion angle of ~ 90°, and the 

forearm and wrist in its neutral position (~0°).44, 45 The strength of the grip was inferred 

by the level of activity of the hand-grip muscles on the forearm46-49 using single-channel 

electromyography (Muscle SpikerShield Bundle model #V2.61, Backyard Brains, Inc.

MI, USA) above the forearm flexor muscle group. A high grip force was identified as 70­

80% of the maximum voluntary contraction (MVC) of the forearm muscles, whereas a 

Low grip force was identified as 0~20% of MVC. Because the participants were asked to 

maintain their posture at all times, the contraction of the forearm flexor muscle groups 

was accompanied by a co-contraction of the whole forearm muscles.

14

Figure 1. Seated human posture during the experiment with a haptic robot (a) 
experimental setup (b) top view of the experimental setup (c) applied robot interaction

force profile for a trial of ~5 seconds.

A haptic robot was used to apply interaction force in two different magnitudes in 

one of four directions to a seated participant as shown in Figure 1. The robot applied a 

force that gradually increased from 0 ^  1N (Low) or 0 ^  2N (High) over a 5-second

duration in such a way that the maximum level of interaction force was reached ~3
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seconds (Figure 1(c)). The slow increase in the force was to avoid stretch reflex.45 After 

~3 sec the level of interaction force remained maximum constant value (2N or 1N) until 

~5 sec when a single trial was ended as presented in Figure 1(c). Then, the level of 

interaction force remained constant until 5 seconds. The robot provided this force to the 

hand in one of the four directions on a horizontal plane (+X, -X, +Z, or -Z directions, 

Figure 1(b)). The direction of the interaction force was the target information that the 

robot provided to the human, whereas the level of the interaction force was the intensity 

of that information. The magnitude of the force was controlled in an open-loop manner 

where the appropriate motor torque profiles were commanded to the robot by the 

experimenter. The position of the robot handle (which is also the position of the 

participant’s hand) was measured by the encoders of the robot joints.

2.2. EXPERIMENTAL PROTOCOL

The aim of this study was to find what affects the sensitivity of the interaction 

force during physical interactions in humans. In this experiment, participants were asked 

to identify if the direction of push as the robot provided the interaction force at the hands. 

Participants were blindfolded to encourage them to focus on the sensation at their hands 

to identify the direction of the push.

At each trial, the robot-provided interaction force was either high (2N) or low 

(1N), and the grip on the robot handle was either high (70~80% of MVC) or low (0~20% 

of MVC). It can be considered a low robot interaction force as RL, high robot interaction 

force as RH, low muscle contraction as ML, and high muscle contraction as MH. 

Therefore, there were four different conditions in the experiment such as high robot
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interaction force with high muscle contraction (RH*MH), high robot interaction force 

with low muscle contraction (RH*ML), low robot interaction force with high muscle 

contraction (RL*MH), and low robot interaction force with low muscle contraction 

(RL*ML).

Participants had no knowledge of the intensity setting of the interaction force in 

any particular trial. Each time the force was applied, participants were asked to identify 

whether the direction of the interaction force towards them (+Z), away from them (-Z), to 

their right (+X), or left (-X), while maintaining their pose. They were allowed to give the 

response at any time during the 5-second period of the force application. Participants’ 

responses were recorded as correct, incorrect, or no-response, where they either declared 

that they could not identify the direction correctly or if they failed to provide a response 

within 5-seconds. For each of the four conditions (RH*MH, RH*ML, RL*MH, and 

RL*ML), there were 6 pushes in each of the four directions (+Z, -Z, +X, and -X), with a 

total of 96 trials in each experiment session. All 96 trials were equally randomized in the 

directions and intensity of the interaction forces as well as in the levels of muscle 

contraction. To avoid muscle fatigue, the randomized sequence of trials was checked to 

ensure that there were no more than four consecutive high-MVC trials. Also, mandatory 

~1 min break were provided during the experiment. Each trial lasted approximately 10 

seconds. In addition to the correctness of the response, the radial displacement of the 

hand as a result of the interaction force was recorded throughout the 5-seconds in all

16

trials.
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2.3. DATA PROCESSING AND ANALYSIS

For each trial, the measurement included the response (correct, incorrect, or no­

response) and the maximum radial displacement.

R = m ax(^dx(t)2 + dz(t)2 ), t= [0, 5] (1)

Where dx and dz are the displacements of the handle in the X and Z directions 

with respect to its initial position at t = 0.

Human arm stiffness was also estimated in the experiment by considering the 

applied robot interaction force and the resulting hand displacement. While direct 

measurement of the interaction force was not available, the commanded robot interaction 

force was used as an approximation of the interaction force value, from which the 2­

dimensional endpoint stiffness of the arm was estimated through the following 

procedure.36, 50, 51

The quasi-static stiffness of the arm is related to the interaction forces and the 

hand displacement such that

[Fxl [Kxx Kxz [dx(t)-
[fJ [Kzx KzzJ [dz(t). , t = 3 sec (2)

Where Fx and Fz are the robot interaction force in the X and Z-direction; dx (t) and 

dz (t) are the displacements in X and Z, respectively, Kxx, Kxz, Kzx, and Kzz are the 

elements of the 2-dimensional stiffness matrix. To avoid dynamic effects, measurements 

at 3 seconds were used. Then, the stiffness elements Kxx, Kxz, Kzx, and Kzz were
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determined for each participant for each of the four conditions (RH*MH, RH*ML, 

RL*MH, and RL*ML) by using the linear least square regression method.

A two-way measure of analysis of variance (ANOVA) was used to find the effect 

of the robot interaction force and muscle contractions on the measurement of the 

sensitivity of the interaction force direction. A generalized linear mixed-effects model 

was also used to analyze the data in a trial-by-trial manner, where the binomial outcome 

measure was whether participants responded correctly on that particular trial. For this, 

no-response was considered as an incorrect response. This analysis included fixed effects 

of robot interaction force, muscle contraction, motion direction (X/Z and +/-), and the 

logarithm of the maximum radial displacement on that particular trial, with a random 

intercept for participant and by-participant random slopes for muscle contraction. The 

maximum radial displacement was transformed to its logarithmic value due to the 

skewness and kurtosis of the raw data sets.

3. RESULTS

3.1. SENSITIVITY TO INTERACTION FORCES IS AFFECTED BY THE 
ROBOT FORCE AS WELL AS MUSCLE CONTRACTION LEVELS

Out of a total of 1920 trials among 20 participants, the number of correct 

responses was 1443 and the number of incorrect responses was 477 trials (including the 

number of no-response: 255).

Among the 4 possible combinations of conditions, the sensitivity to the interaction 

force direction was highest when the applied force was high and the muscle contraction 

was low (RH*ML, average 99.0%), and lowest in RL*MH (average 34.8%, Figure 2 (a)).

18
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It was observed that with a low level of robot interaction force and low level of muscle 

contraction (RL*ML) condition, the percentage of correct responses was comparable 

(average 87.1%) with high robot interaction force and high muscle contraction (RH*MH, 

average 79.8%) condition, where in both RL*ML and RH*MH, the sensitivity was higher 

than in RL*MH and lower than in RH*ML. These trends were statistically significant 

where applying lower robot interaction force (RL*MH and RL*ML conditions) 

decreased the sensitivity by 11.88% (p < 0.001), whereas high muscle contraction 

(RH*MH and RL*MH conditions) decreased the sensitivity by 19.17% (p < 0.001,

Figure 2 (b)). The combined effect of the low robot interaction force (RL) and the high 

muscle contraction (MH) was also significant, decreasing the sensitivity of the interaction 

force by an additional 33.13% (p < 0.001). These results are summarized in Table 1.

Figure 2. Percentage of correct responses varies with the level of muscle contraction 
where correctness was maximum (~100%) at high robot force with low muscle 

contraction (RH*ML) condition (a) experimental results (different colors represent 
different participants) (b) ANOVA analysis of the percentage of correct responses.
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Table 1. Fixed effects of the percentage of correct responses using linear mixed model fit 
by REML and t-tests use Satterthwaite's method.
Estimate Std. Error df t value Pr (>|t|)

Intercept 0.98958 0.02174 102.91522 45.512 < 2e-16 ***

RL -0.11875 0.02848 137.00000 -4.170 5.38e-05 ***

MH -0.19167 0.02848 137.00000 -6.730 4.25e-10 ***

RL*MH -0.33125 0.04028 137.00000 -8.225 1.35e-13 ***

3.2. HIGH RADIAL DISPLACEMENT OF THE HAND INCREASES THE 
SENSITIVITY TO SMALL INTERACTION FORCES

The radial displacement of the hand from the center (initial position) in each trial 

was strongly correlated with the sensitivity of the interaction force direction (Figure 

3(a)). The radial displacement was the highest during the RH*ML condition (red), during 

which the chance to make correct responses was also the highest. As the radial 

displacements are lower in RL*ML and RH*MH trials, the chance of correct responses 

was also lower. The radial displacement was the smallest in the RL*MH condition where 

the least correct responses were made. Linear regression showed a correlation of R2 = 

0.228 between the percentage of correct responses and the radial displacement in a 

logarithmic scale. In addition, the radial displacement was higher in trials with correct 

responses than in trials with incorrect responses after removing participant variability (p 

< 0.001, Figure 3(b)). Including participant variability, the logarithmic radial
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displacement of all trials with correct and incorrect responses was 2.270±0.430 mm (out 

of 1443 trials) and 1.876±0.302 mm (out of 477 trials), respectively. Paired sample t-test 

showed a difference of 0.40±0.26 mm with a large effect size (Cohen’s D=1.54).
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Figure 3. (a) Percentage of correct responses increases with radial displacement from the 
initial position and was highest during high robot interaction force with low muscle 

contraction (RH*ML, red) condition, during which the radial displacement was also high. 
Linear regression fit gives R2=0.228 (b) mean and standard deviation of logarithmic 

radial displacement of all correct response trials (C) was higher than incorrect response
trials (I) (p < 0.001).

Then, a generalized linear mixed-effects model was used to analyze the items that 

affect the correctness of the response in a trial-by-trial manner, where the binomial 

outcome measure was whether participants responded correctly on that particular trial. 

We included fixed effects for robot interaction force, muscle contraction, the direction of 

the push from the robot (X/Z and +/-), and logarithmic radial displacement on that 

particular trial, with a random intercept for participants and by-participant random slopes 

for muscle contraction. Table 2 shows that the sensitivity to the direction of the force was
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reduced by low robot interaction force (RL, p<0.001), high muscle contraction (MH, 

p<0.001), and with Z-direction movement (DZ, p<0.05), as indicated by the negative 

estimates and the corresponding odds ratios below 1 (where {odd ratio} = exp 

(estimate)). The participants were 0.122 times more likely to be correct in RL trials than 

in RH trials, 0.058 times more likely to be correct in MH trials than in ML trials, and 

0.766 times more likely to be correct in the Z direction movements than in the X 

direction. On the other hand, the sensitivity was increased by positive direction pushes 

(Dir+, in X+ or Z+ directions, p<0.001) and larger radial displacement (LogD, p<0.02), 

as indicated by the positive estimates and the corresponding odds ratios above 1. The 

participants were 1.678 times more likely to be correct in X+ or Z+ directions than in X- 

or Z- directions, and were 1.308 times more likely to be correct for a unit increase (1 

mm) in the logarithmic radial displacement. The number of observations in this analysis 

was 1920 (20 participants x 96 trials).

Unlike the ANOVA analysis presented in Table 1, the interaction between the 

robot force and the muscle contraction was not significant in this analysis, suggesting that 

it may have been a statistical artifact caused by the ceiling effect of near-perfect accuracy 

in the RH*ML condition.

22

Table 2. Fixed effects of all parameters using generalized linear mixed model fit by 
maximum likelihood in a trial-by-trial manner.

Estimate Std. Error z value Odds ratio Pr(>|z|)

(Intercept) 3.6454 0.4161 8.760 < 2e-16 ***

RL -2.1046 0.1497 -14.055 0.12189 < 2e-16 ***
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Table 2. Fixed effects of all parameters using generalized linear mixed model fit by 
maximum likelihood in a trial-by-trial manner (cont.).

MH -2.8480 0.2985 -9.539 0.05796 < 2e-16 ***

Dir+ 0.5178 0.1323 3.914 1.6783 9.07e-05 ***

DZ -0.2666 0.1312 -2.032 0.76598 0.0421 *

LogD 0.2686 0.1138 2.361 1.308 0.0182 *

3.3. ESTIMATED ARM STIFFNESSES DEPEND ON BOTH ROBOT FORCE 
AND MUSCLE CONTRACTION LEVELS

The estimated arm stiffness was dependent on the experimental conditions (Figure 

4(a)). The norms of the 2x2 stiffness matrices computed from the force-displacement 

relationship after 3 seconds were averaged across trials and participants for the four 

conditions. The average arm stiffness norm was the lowest in the RL*ML condition 

(167.13 N/m) and highest in the RH*MH condition (372.95 N/m), with intermediate values 

in RH*ML (225.07 N/m) and RL*MH conditions (314.57 N/m). The stiffness was higher 

in RH than in RL, and in MH than in ML. These trends were statistically significant (p < 

0.001, Figure 4(b) and Table 3). The low robot interaction force (RL) reduced the arm 

stiffness norm by -58.47 N/m, whereas the high muscle contraction (MH) increased the 

arm stiffness norm by 181.56 N/m. The estimated 2x2 stiffness matrices are provided in 

Table 4, which shows the characteristics of typical arm stiffness matrices with low off- 

diagonal terms.36, 50
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(a) (b)

Figure 4. Norm of the arm stiffness increases with the increase of muscle contraction and 
robot interaction force. The average stiffness was highest during high robot interaction 

force with high muscle contraction (RH*MH) condition (a) experimental results 
(different colors represent different participants) (b) ANOVA analysis of the stiffness

norm.

Table 3. Fixed effects of stiffness norm using linear mixed model fit by REML and t-tests
use Satterthwaite's method.

Estimate Std. Error df t value Pr (>|t|)

Intercept 245.26 25.26 34.44 9.709 2.16e-11 ***

RL -58.47 18.70 58.00 -3.127 0.00276 **

MH 181.56 18.70 58.00 9.709 9.16e-14 ***

Table 4. Estimated average stiffness values of all 20 participants.
Stiffness (N/m) Conditions

RH*MH RH*ML RL*MH RL*ML

Kxx 312.81 205.11 263.67 156.11



www.manaraa.com

25

Table 4. Estimated average stiffness values of all 20 participants (cont.).

Kxz -8.36 -17.13 17.72 -8.02

Kzx 21.86 -20.67 26.30 -10.93

Kzz 371.85 207.15 305.01 158.98

4. DISCUSSION

Forces applied to the hand may be sensed by the respective force sensors at the 

hand, such as the cutaneous pressure receptors on the palm. However, when the pressure 

on the palm is high due to a strong hand grip, the cutaneous pressure sensors on the skin 

may suffer from decreased sensitivity to small changes in the pressure, since our ability 

to detect a change in pressure (the Just Noticeable Difference, or JND) tends to be about 

8-10% of the current stimulus intensity. This makes the detection of small interaction 

forces to be less effective through the pressure sensors on the hands in our MH conditions 

where the co-contraction of the forearm muscles increases the grip force. Indeed, the 

approximate grip force for the high muscle contraction (70-80% MVC) was 20- 

30N,36,46,52,53 meaning that a 1N applied force is an increase of only 3-5%, likely below 

the threshold for detection. In contrast, during low muscle contraction (0~20% MVC) 

grip force was less than 5N, so 1N of applied force should be at least a 20% change. 

However, detecting a change in cutaneous pressure is not the only way to sense the 

applied force. As force is applied to the hand, the joints in the arms are displaced as a 

result, unless the human body is completely rigid which is impossible. This
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displacement is picked up by the proprioception on muscles and tendons (ex. the Golgi- 

tendon organs and/or the muscle spindle), which are known to sense kinematics. That 

is, forces at the hands may be sensed as the arm is displaced as a result, regardless of 

whether the applied force is above the detection threshold of the cutaneous pressure 

receptors. This is especially relevant in scenarios in which the handgrip must be tight to 

ensure the security of the mechanical coupling between the two partners (ex. providing 

balance assistance during walking).

Indeed, our experiment suggests that the participants may be utilizing these 

kinematic sensors as an effective force sensor. It was observed that the sensitivity of the 

interaction force direction was higher when the radial displacement/movement of human 

arms were larger. In addition, the sensitivity of the interaction force was higher when the 

muscle contraction was low that reduced the pressure on the palm. In this view, 

participants may have sensed the direction of the interaction force by sensing the 

displacement/movement of their arms and/or from the changes in the pressure on their 

palm when the grip was not tight (ML conditions). When the grip was very tight (MH), 

however, the hand-robot handle coupling between the human and the robot served mainly 

as a mechanical connection that allowed the interaction force to generate arm 

displacements which are eventually sensed by the proprioceptors. This view is consistent 

with the recent observation that the muscle spindles may encode forces during stretch.54

In this experiment, all participants were asked to sense the direction of interaction 

force through the senses in their arms and hands without any visual feedback. In all four 

combinations of conditions, the subject's arms were displaced from the initial position in 

X and Z-directions due to the applied interaction force from the robot handle. It was
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observed that human arm displacement was higher during low muscle contraction 

conditions (ML) in which the arms are estimated to be less stiff than in the high muscle 

contraction conditions (MH) as shown in Figure 4(b). This is consistent with the 

observation that the arm displacements were higher during ML than in MH conditions, as 

shown in Figure 3(a). The arm displacement was the smallest in the low robot interaction 

force and high muscle contraction (RL*MH) condition. The movement of human arms 

increased at a higher robot interaction force than low robot interaction force for the same 

level of muscle contraction

On the other hand, participants' ability to sense the interaction force direction was 

high when the arm displacement was also high - which occurred when the estimated arm 

stiffness was low. For example, the sensitivity of the direction of interaction force was 

higher in the RL*ML condition than the RL*MH condition. Hence, with the same level 

of robot interaction force in the same specific posture of the human arm, the sensitivity of 

the interaction force direction varied depending on the level of muscle 

contraction/stiffness/muscle activation level of the human arm. In addition, for the same 

specific posture, experimental trials where the arm was stiffer (less displacement) were 

less likely to be correct than trials with low arm stiffness (high displacement). Overall, 

human arm movement was related to the correctness of the interaction force/sensitivity of 

the interaction force direction. Hence, humans may benefit from lowering their arm 

stiffness as it would help them to increase the displacement of the arm, allowing even 

small interaction forces to be detected.

The estimated magnitudes (norms) of the 2x2 stiffness matrices are smaller when 

the robot force was low (RL) and higher in RH, despite the fact that the muscle
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contraction levels were kept similar, as shown in Figure 4(b) and Table 3 (p<0.003). A 

possible explanation for this phenomenon is that it is due to the well-known nonlinear 

force-displacement relationship of skeletal muscles. Given a nonlinear force- 

displacement curve originating from a specific level of muscle contraction and posture, 

the slope (stiffness) of the curve is high for high robot interaction force and low for lower 

robot interaction force. As a consequence, a linear approximation of the arm stiffness 

would be lower with low robot interaction force. That is, even if the participants did not 

modulate their muscle contraction level (%MVC), the arm stiffness may be estimated 

differently depending on the applied force level.

Nonetheless, there still is a possibility of voluntary modulations of the muscle 

contraction by the participant, due to the inherently variable muscle activity recordings 

that cannot completely rule out such cases. In this regard, a possible alternative 

explanation to the lower stiffness in RL conditions is that there may be an unmeasured 

lowering of muscle contraction in RL conditions, intentionally or otherwise, so as to be 

more sensitive to the low level of interaction force. This lowering of the arm stiffness 

may not have occurred as prominently in the RH conditions since the higher interaction 

forces are easier to detect even without lowering the arm stiffness to take advantage of 

the proprioception.

However, it is emphasized once again that a direct measure of the interaction 

force was not available in this research, and thus the reported arm stiffness is not a direct 

measurement. Therefore, further research is required to find the variation of endpoint
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stiffness with different levels of the interaction force.
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Better pHRI may be possible by lowering the stiffness of the robot arm to mimic 

the characteristics of the human arms. Effective pHRI begins from a better understanding 

of how human participants communicate movement intentions with their partners through 

the physical coupling. It has been suggested that humans can effectively guide other 

humans by hand by using interaction forces to communicate intentions during 

walking,16,19,20 handshaking,17,18 etc. In this work, it was suggested that humans are more 

sensitive to the interaction forces when their arm stiffness is lower. Humans may expect 

their partner’s arm stiffness to be lower because it is natural and advantageous for them 

to communicate through interaction forces. If so, in pHRI, the humans may also expect 

their robot partners to have a compliant, low-stiffness arm, rather than a stiff and sluggish 

arm. A low-stiffness robot arm may be regarded as more human-like.

There are a number of valuable additional benefits of a low-stiffness robot arm. 

For example, a soft, easy-to-manipulate robot arm is less likely to be a safety threat to a 

human partner and may help the subjective quality of the pHRI to improve. This may be 

especially important in healthcare applications where a robot may interact with frail 

populations. Also, to provide low stiffness, a robot arm may be designed using smaller 

actuators or power sources to reduce development cost and the overall size of the robot. 

Note, however, that robots do not require low stiffness for increased force sensitivity. 

Their sensors (electromechanical transducers) do not suffer from the same reduced 

sensitivity at a higher force that is common in human perception. Hence, if all the robot 

needs is to sense the interaction force from the human partner, its arm impedance is 

irrelevant. The low arm stiffness of the robot would be for the benefit of the human

partner, and not as much for itself.
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This work was mainly inspired by the necessity to implement intuitive and 

effective pHRI. It is suggested that low muscle contraction may help increase the 

sensitivity to the small interaction forces, which may contain movement intentions of the 

partner, by allowing higher arm displacements to occur. The results of this work imply 

that the lower robot arm stiffness or human arm muscle contraction may be the desired 

characteristics of pHRI and pHHI. The findings of this experiment can be used to guide 

the design of a robot for physical interaction tasks with a human.
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II. FACTORS AFFECTING THE SENSITIVITY TO SMALL INTERACTION
FORCES IN HUMANS

ABSTRACT

Effective physical human-robot interaction (pHRI) depends on how humans can 

communicate their intentions for movement with others. While it is speculated that small 

interaction forces contain significant information to convey the specific movement 

intention of physical human-human interaction (pHHI), the underlying mechanism for 

humans to infer intention from such small forces is largely unknown. The hypothesis in 

this work is that the sensitivity to a small interaction force applied at the hand is affected 

by the movement of the arm that is affected by the arm stiffness. For this, a haptic robot 

was used to provide the endpoint interaction forces to the arm of seated human 

participants. They were asked to determine one of the four directions of the applied robot 

interaction force without visual feedback. Variations of levels of interaction force as well 

as arm muscle contraction were applied. The results imply that human’s ability to identify 

and respond to the correct direction of small interaction forces was lower when the 

alignment of human arm movement with respect to the force direction was higher. In 

addition, the sensitivity to the direction of the small interaction force was high when the 

arm stiffness was low. It is also speculated that humans lower their arm stiffness to be 

more sensitive to smaller interaction forces. These results will help develop human-like 

pHRI systems for various applications.



www.manaraa.com

37

1. INTRODUCTION

Conventional robots have been used in various application areas such as 

healthcare1-3 and manufacturing.4, 5 In most of these applications, robots perform only 

predefined tasks where they do not need to interact and follow human commands in a 

continuous fashion.6 In contrast, interactive robots are expected to be used in physically 

closer applications to humans through direct arm contact. They are used to perform 

cooperative interaction tasks with humans,6 such as in robot-assisted surgery or 

exoskeleton robots.7, 8 Ongoing demand for quality nurses, therapists, and productivity in 

production increases the need for such human-like interactive robots. They have 

significant potential in nursing and patient care applications including rehabilitation, 

physical therapy, etc. Additionally, interactive robots may serve as full-time or temporary 

human caregivers for disabled elders and neurological patients.8, 9

Despite the technological advancement of robotics, for interactive robots to 

support human movement during human-like interaction tasks, there remain 

technological gaps for intuitive, safe, and effective physical human-robot interaction 

(pHRI). To develop a human-like interactive robot, it is necessary to first understand how 

humans physically interact with one another, to exchange their intentions and reactions 

through the physical coupling.6 Indeed, humans are experts in physical interaction. 

Through non-verbal physical human-human interaction (pHHI), human dyads can 

improve their performance,10,11 detect each other’s roles,[11] and distinguish motor 

experience13 through interaction forces only. These information-rich interaction forces 

are approximately 20N or less in magnitude,13 and often even below 1N.14 Therefore, the
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sensitivity of small changes of interaction forces is required for motor communication 

between human-human and human-robot dyads. Humans seem capable of decoding 

information from these small interaction forces.

Then, how do humans sense and interpret small interaction force during 

physically interactive tasks? A possibility is that humans detect small interaction forces 

through the mechanoreceptors at the skin of the hand.6, 10, 11 However, these skin 

receptors may be ineffective to identify the subtle changes of the small interaction forces 

if the preload due to secure hand grip is much greater than the changes in the magnitudes 

of force.15-17 Alternately, proprioceptors in the muscles and joints, such as muscle 

spindles or Golgi Tendon Organs, may detect arm movements as a result of small 

interaction force. As long as the arm stiffness is maintained low, small changes in force 

may generate sufficient arm movement that is detected by the proprioceptors and 

interpreted by the human.

To this end, the aim of this paper is to investigate the factors that can affect the 

sensitivity to small interaction forces during pHRI. The hypothesis of this work is that a 

better sense of the small interaction force is obtained if the corresponding movement of 

the arm is aligned with the applied force. In addition, lower stiffness that is favorable for 

larger movement will improve the sensitivity to small forces.

38
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2. MATERIALS AND METHODS

2.1. EXPERIMENTAL SETUP

The hypothesis and experimental protocol of this research work are preregistered 

in the open science foundation (https://osf.io/qbmcx). 20 healthy young adults were 

recruited for this research (1 female, 22.1±4.0 years of age). All participants were right­

handed and had no prior neurological disorders or diseases. The experimental protocol 

was approved by the institutional review board (IRB) of the University of Missouri. All 

subjects gave their written, informed consent.

The experiment involved a haptic robot (Phantom Premium 1.5/6 DOF-HF, 3D 

Systems, USA) that provided interaction forces to the arm of a seated participant while 

they held the robot handle as shown in Figure 1(a). Shoulder straps were used to maintain 

the back of the participants against the rigid chair throughout the experiment. All 

participants maintained a specific posture (distance between the sternum and right arm 

was ~30% of arm length, ~71o shoulder abduction angle, 45o shoulder horizontal flexion, 

90o elbow flexion, and forearm, wrist in their neutral 0o position) during the experiment.18 

The level of forearm muscle contraction was measured using single-channel 

electromyography (Spikershield #V2.61, Backyard brains, MI, USA). The haptic robot 

applied two different levels of interaction force (low: 0 ^  1N and high: 0 ^  2N) for ~5- 

seconds to the arm that increased gradually as shown in Figure 1(b). Between ~3 to ~5- 

seconds the levels of forces were kept constant at their maximum values (1N or 2N). The 

gradual increase of interaction force was intended to avoid stretch reflexes The robot

https://osf.io/qbmcx
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provided the interaction forces in four different directions (+Z, -Z, +X,-X) as shown in 

Figure 1(c).
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Figure 1. (a) Experimental setup (b) force profile for high (2N) and low (1N) robot 
interaction force up to 3 sec (c) top view of experimental setup.

2.2. EXPERIMENTAL PROTOCOL

All participants maintained the specific right arm posture with their eyes closed. 

Two di fferent level s of interaction force (high: 2N, low: 1N) were applied to the 

participants’ hands while they maintained one of two levels of forearm muscle 

contraction (high: 70-80% MVC, low: 0-20% MVC), constituting four different 

experimental conditions (HH- high force high muscle contraction, HL- high force low 

muscle contraction, LH- low force high muscle contraction, and LL- low force low 

muscle contraction). Each participant performed a total of 96 trials that consisted of 24 

trials of each of the four conditions (HH, HL, LH, and LL). For each condition, the force 

was applied 6 times in each of the four orthogonal directions (+X, -X, +Z, or -Z).
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2.3. DATA PROCESSING AND ANALYSIS

In addition to the participant’s responses, the setup also measured the alignment 

of arm movement with the directions (+X and +Z, Figure 2(a)) of robot interaction force.

0 = tan l 4dz(t)K
(|dx(t)f (1)

0 = tan l Jdx(t)L 
( |dz(t)|) (2)

where, dz and dx are the displacements of the robot handle from the initial position (t=0) 

in the Z and X directions at the point where radial displacement for a trial (0-5 seconds) 

was maximum that can be calculated using dx and dz.

R = max (^dx(t)2 + dz(t)2) , t = [0,5] (3)

In this experiment, arm stiffness was also estimated from the interaction forces 

that is commanded to the robot and the arm (robot handle) displacements. The two­

dimensional stiffness was calculated by the following equation.19

[Fxl [Kxx Kxz [dx(t)-
bz! [Kzx KzzJ [dz(t). (4)

where Fx and Fz are the robot commanded interaction forces in the X and Z-direction,

Kxx, Kxz, Kzx, and Kzz are the elements of the 2-dimensional stiffness matrix. The stiffness
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elements and stiffness norm were calculated using a linear least square regression model. 

To overcome dynamic effects, stiffness was measured at 3 seconds for the high and low 

levels of forces. For comparing the stiffness at 1N, the stiffness was also measured at 1.5 

seconds during the high-force trials.

For statistical analysis, a generalized linear mixed model was used to find the data 

in trial-by-trial manner, where correct and incorrect responses were the binomial 

outcomes where no-response was considered as an incorrect response. This analysis 

included the fixed effects of the alignment of arm movement to the force (angle). Two­

way analysis of variance (ANOVA) was used to find the effect of low robot interaction 

force and high muscle contraction on the stiffness norm.

3. RESULTS

3.1. THE ALIGNMENT OF ARM MOVEMENTS TO INTERACTION FORCES 
AFFECT THE SENSITIVITY

Among 1443 correct trials and 477 incorrect trials where 255 trials were no­

response for all participants, the sensitivity to small interaction forces was high when the 

misalignment of arm movement with the force direction was low (Figure 2(b)). The 

highest sensitivity was observed when the arm movement was exactly along the direction 

of the applied robot interaction force. These trends were statistically significant (p<0.05). 

The linear mixed-effects model of the angles showed that the sensitivity to small 

interaction forces was decreased by the increase of misalignment of arm movement 

(negative estimate,-0.06442). The odds ratio (0.937) was found to be less than 1, which
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indicates that subjects were 0.937 times as likely to be correct for a 10o increase of the 

misalignment angle.
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(a)
Figure 2. (a) Representation of arm alignment (angle) with the direction of i nteracti on 

force (b) correct responses had a lower average angle with the direction of applied robot 
interaction force than incorrect respon ses (ANOVA analysis).

3.2. HIGHER ARM STIFFNESS DECREASES SENSITIVITY TO SMALL 
INTERACTION FORCES

The human arm stiffness norm for the high and low levels of interaction force was 

correlated with the sensitivity to the force direction (Figure 3). Linear regression for the 

trials with a high level of interaction force (2N) showed a correlation of R2=0.2470 

between the percentage of correct responses and the stiffness norm where forearm muscle 

contraction varied between high (H: 70-80 %MVC) and low (L: 0-20 %MVC). Similarly, 

linear regression of small interaction force (1N) provided a correlation of R2=0.50. 

However, the coefficients (slope) of linear regression for high interaction force was 

-0.03942, while it was -0.1606 for small robot interaction force, which indicates that the
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reduction of sensitivity with the increase of stiffness norm was more pronounced for 

smaller interaction forces.
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Figure 3. Percentage of correct responses increases with the decrease of stiffness norm 
of human arm during pHRI (slope and R2 values for high force (2N) was -0.03942 and 

0.2470, for low force (1N) they were -0.1606 and 0.50 respectively).

3.3. ARM STIFFNESS IS LOW AT LOWER INTERACTION FORCE

The estimated stiffness of human arm varied with the level of interaction force 

despite the instructions to the participants to maintain a constant level of muscle 

contraction (%MVC) (Figure 4). The stiffness norm (2N) was calculated from the force- 

displacement relationship at t=3 seconds as well as t=1.5 seconds, while only at 3 

seconds for the small interaction force (1N), since after 1.5 seconds in the high force trial, 

the magnitude of force was equal (1N) to the small interaction force trial (1N) at 3 

seconds. All the stiffness values were averaged across all participants and trials for all

four conditions.
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It was observed that all the subjects were stiffer in the Z direction than X- 

direction force as Kzz >Kxx for all the four conditions (Table 1, 399.01 N/m>346.93 N/m, 

211.82 N/m>204.29 N/m, 305.01 N/m>263.67 N/m, and 158.98 N/m>156.11 N/m).

Also, stiffness at 2N force at 3 and 1.5 seconds trials were comparable with each other 

(Table 1, HL=205.11 N/m= ~204.29 N/m), while higher for 1N at 3 seconds trial (Table 

1, 312.81 N/m >263.67 N/m, 371.85 N/m >305.01 N/m, 207.15 N/m > 158.98 N/m). 

These trends were statistically significant (p<0.001, Figure 4(b)). It was also observed 

that the stiffness norm was higher for high robot interaction force, while lower for a 

lower level of interaction force, regardless of the level of muscle contraction (Figure 

4(b)).

45

(a)

Figure 4. (a) Human arm stiffness is high for high interaction force (2N) and low for 
lower interaction force (1N) trial for the same level of muscle contraction (different color 
denotes different subjects) (b) ANOVA analysis of stiffness norm for high and low level

of interaction force.
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Table 1. Overall human arm stiffness during higher (2N) and lower levels of force (1N).

Stiffness Condition 1 Condition 2 Condition 3

(N/m) Time 3 sec and force 
2N

Time 1.5 sec and force 
2N

Time 3 sec and force
IN

HH HL HH HL LH LL

Kxx 312.81 205.11 346.93 204.29 263.67 156.11

Kxz -8.36 -17.13 7.17 -10.29 17.72 -8.02

Kzx 21.86 -20.67 3.95 -15.93 26.30 -10.93

Kzz 371.85 207.15 399.01 211.82 305.01 158.98

Table 2. Fixed effects of stiffness norm during linear mixed model.
Estimate Std. Error df t value Pr (>|t|)

Intercept 280.81 30.72 69.20 9.141 1.61e-13 ***

Robot_low -112.47 33.89 58.00 -3.32 0.00157 **

For the same 1 N of force, the average stiffness norm was higher (399.6 N/m) for 

HH at 1.5 sec than for LH at 3 seconds (314.57 N/m). Similarly, the average stiffness 

norm was higher (221.71 N/m) for HL at 1.5 sec, compared to the LL condition (167.13 

N/m) at 3 sec. All these trends were statistically significant (Table 2, p<0.001). 

Conditions with smaller interaction force decreased the stiffness norm by 112.47 N/m 

although participants maintained the same level of muscle contraction (Table 2).
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4. DISCUSSION

Humans may sense the direction of interaction force through the cutaneous 

pressure receptors of their palms during pHHI and pHRI. However, the results in this 

work suggest that higher alignment of arm movement to the direction of force increases 

the sensitivity of small interaction force, despite the fact that the force direction does not 

change and the pressure receptors could have detected the direction of force. This 

suggests that accurate arm movement direction, and not force direction, is important in 

detecting the direction of the push or pull with small forces. This further implies that the 

proprioceptors that detect the arm movement, such as the Golgi tendon organs or muscle 

spindles, may be more suitable for detecting small interaction forces than the pressure 

receptors at the hand. This is especially true when the grip force dominates the preloaded 

pressure on the cutaneous sensors,17 as can be seen by the reduced sensitivity during high 

muscle contraction trials in which the grip forces are higher.

For proprioceptors to detect the force, however, sufficient arm movement should 

be generated at the direction of the force. At higher arm stiffness, the displacement or 

movement of the arm may be insufficient and thus reduce the sensitivity to small 

interaction forces. The results in Figure 3 illustrates this interpretation that, in addition to 

reducing the efficacy of the cutaneous sensors by increasing the preload, high muscle 

contraction also leads to higher arm stiffness that will also reduce the efficacy of the 

proprioceptors.

A notable observation was that the arm stiffness was higher when the applied 

force was high (2N), even though the muscle contraction remained similar. A possible
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explanation is that higher force created faster and larger movements which results in 

larger stiffness due to stretch reflex as well as the non-linear force-to-length relationship 

of the muscles. Alternatively, humans may have reduced their arm stiffness, perhaps 

unconsciously, to better sense the direction of small interaction force (1N). The muscle 

contraction measure may not have captured this due to inherently noisy signals. Further 

investigation on this phenomenon may benefit from more accurate measurement of 

muscle activities as well as a direct measure of the interaction force.

5. CONCLUSIONS

This research work was motivated by the need to develop an effective human-like 

interactive robot. It is suggested that low arm stiffness with better alignment of arm 

movement with the direction of force may help improve physical communication through 

small interaction force during pHRI.
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SECTION

2. CONCLUSIONS AND RECOMMENDATIONS

2.1. CONCLUSIONS

This research investigated the factors that affect physical interactions between two 

humans or one human and another robot. The work was completed because of the 

necessity for developing a humanlike interactive robot that can be used for different 

interaction tasks with humans. To identify and analyse the factors, a physical human- 

robot interaction (pHRI) experiment was developed and the resultant information was 

utilized to program an interactive robot. In the developed pHRI system, humans held the 

arm of a haptic robot that guided humans in different prescribed directions. The data from 

the developed pHRI experiment, such as applied robot interaction force, maximum radial 

displacement of the arm, level of maximum voluntary contraction (MVC) of forearm 

muscle, human arm stiffness, and the alignment of human arm movement with the 

direction of applied interaction forces were used to identify the sensitivity of human arm 

to small interaction forces. In this experiment, the commanded haptic robot interaction 

force was used as an approximation of the interaction force, and an electromyography 

(EMG) system was used to find the level of MVC of the forearm muscle. The 

experimental data was then used to investigate the research hypotheses of this work and 

conclusions were drawn accordingly.

Hypothesis 1 states that a small interaction force is felt through the changes in the 

kinematic displacement of arm muscles and tendons. This was supported.
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The results of this research showed that the sensitivity of small interaction forces 

was highest when the radial displacement of the hand from the initial position was also 

the highest. This was obtained at higher (2 N) robot interaction forces and low muscle 

contraction (RH*ML) conditions. Additionally, on a logarithmic scale, a linear regression 

R2=0.228 implied that the sensitivity of small interaction forces depends on maximum 

radial displacement from the initial (center) position. However, the sensitivity of the 

interaction force direction was higher when the muscle contractions were low, and that 

decreased the pressure on the palm. From this perspective, participants may have sensed 

the direction of the interaction force by sensing the displacement of their arms and/or 

from the changes in the pressure on their palm when the grip was not tight (low muscle 

contraction conditions). When the grip was very tight (high muscle contraction 

conditions, 70-80% MVC), the hand-robot handle coupling between the human and the 

robot served mainly as a mechanical connection that allowed the interaction forces to 

generate arm displacements that were eventually sensed by the proprioceptors. 

Additionally, this hypothesis was supported because low arm stiffness can be used to 

increase the kinematic displacement of arm muscles, joints, and tendons, and that can be 

sensed by proprioceptors, including Golgi-tendon organs. In this research, participants 

utilized these kinematic sensors as an effective interaction force sensor to sense the 

direction of small interaction forces. Hence, higher arm stiffness can make the detection 

of small interaction forces less effective through the pressure sensors on the hands, but 

they may be sensed through the kinematic sensors in human arms.
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Hypothesis 2 states that the alignment of the human arms with the direction of 

applied interaction forces may affect the accuracy of the direction of small interaction 

forces during pHHI and pHRI. This hypothesis was supported.

The results of this research supported the third hypothesis including the alignment 

of the human arm with the direction of applied interaction forces that significantly 

affected the sensitivity to small interaction forces during pHRI. This finding suggested 

that the appropriate direction for the movement of the human arm was significant to sense 

the direction of applied small interaction forces. This hypothesis also strengthened the 

first hypothesis regarding the proprioceptors (Golgi tendons) that helped detecting the 

arm movements, and they may be more effective for sensing small interaction forces than 

pressure receptors in the human arm. This is true when humans hold robot arms with high 

grip forces.

Hypothesis 3 states that humans may decrease the stiffness of their arms to 

increase the sensitivity to small interaction forces. This was also supported.

The results of this research implied that lower arm stiffness is an effective way to 

sense the direction of small interaction forces, even when humans hold robot arms with a 

high grip force. It was obtained that 2x2 stiffness norms were low for low robot 

interaction forces, and it was high for high robot interaction forces. Although, the level of 

muscle contraction was the same. This may be due to humans intentionally reducing their 

arm stiffnesses during small interaction forces making them more sensitive to the low 

levels of robot-provided interaction forces. However, lowering of the arm stiffness may 

not have occurred as prominently in the high robot interaction force conditions because 

the higher interaction forces were easier to detect even without lowering the arm stiffness

53
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to take advantage of the proprioception. Humans may have intentionally reduced their 

arm stiffnesses to increase sensitivity to small interaction forces when their arm grip 

forces and pressures on the palms, were high enough that the cutaneous pressure sensors 

on the skin suffered from reduced sensitivity to small changes in the pressure. This 

happens because humans’ abilities to detect a change in pressure are low at about 8-10% 

of the current stimulus intensity. Additionally, lower robot arm stiffness may be better for 

effective and intuitive pHRI as when there was no visual feedback for heightened 

humans’ sensitivities to small interaction forces when compared to higher arm stiffnesses. 

This experiment finding help design an interactive robot to mimic the characteristics of 

human arms.

2.2. RECOMMENDATIONS

The research showed several different aspects, factors, hypotheses, and scientific 

answers regarding the sensitivity of small interaction force through human arms during 

physical interactions with haptic robots. However, there are scopes to expand upon for 

future research.

In this research, there was no direct measurement of robot interaction forces. The 

commanded robot interaction force was considered as the approximation of the 

prescribed interaction force value. As a consequence, the calculated stiffness was also not 

a direct measurement of human arm stiffness. Hence, a direct measurement setup through 

a force sensor could be added for further research. This could be added at the interaction 

point between the human arm and the robot handle. In this way, the variation of human

54

arm stiffness can be obtained for different levels of interaction forces.
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Another consideration for future research is to a use multi-channel high-resolution 

electromyography (EMG) system for different upper arm muscles throughout the 

experiment. In the experiment, the strengths of the grips and levels of maximum 

voluntary contractions (MVC) were measured by the activity levels of the hand-grip 

muscles on the forearm using single-channel electromyography for the muscle 

spikershield bundles (model #V2.61, Backyard Brains, Inc. MI, USA) above the forearm 

flexor muscle groups. By using a multi-channel electromyography (EMG) system, the 

strength of shoulder, bicep, tricep, and wrist muscles can be measured. Only the levels of 

maximum voluntary contraction (MVC) were used in this study to identify the sensitivity 

of small interaction forces at two different stiffnesses for the human arms, and no direct 

results were calculated regarding these levels of MVC.
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PARTICIPANT INFORMATION

Table A.1. Details of the Participants.

Participant Participant
Code

Gender Age* Length of arm 
(inch)

Prior Neurological 
Disorder

1 P01 M 18 35 N/A

2 P02 M 22 36 N/A

3 P03 M 18 36 N/A

4 P04 M 27 35 N/A

5 P05 M 18 33 N/A

6 P06 M 19 36 N/A

7 P07 M 19 35 N/A

8 P08 M 24 34 N/A

9 P09 M 28 35 N/A

10 P10 M 20 36 N/A

11 P11 M 29 36 N/A

12 P12 M 27 34 N/A

13 P13 M 19 35 N/A

14 P14 M 22 37 N/A

15 P15 F 24 36 N/A

16 P16 M 20 36 N/A

17 P17 M 23 37 N/A

18 P18 M 29 33 N/A
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Table A.1. Details of the Participants (cont.).

19 P19 M 18 36 N/A

20 P20 M 18 35 N/A

*Age on the date of the experiment
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SEQUENTIAL INSTRUCTIONS FOR THE EXPERIMENTER

1. Prior to participant's arrival

• Turn on Phantom motors.

• Power on the electromyography equipment.

• Setup and open the Visual Studio and Arduino software

2. As soon as the participant enters the lab

• Check the participant’s body temperature using an infrared thermometer.

• Ask participants to clean their hands with soap from the sink in the lab and 

use sanitizer.

• Ask the experimenter and the participants to wear face coverings 

throughout the experiment.

• Proceed once all sanitation practices are completed.

3. Start of the experiment

• Provide participants with consent forms and demonstration of the 

experiment, give verbal instructions, and take queries if any.

• Measure the arm length of the participant using a measuring tape.

• Sit in front of the haptic robot experimental set up on a chair.

• Perform conventional skin preparation techniques before applying 

disposable dual electrodes to the skin. For example, remove extra hair of 

hand on electromyography (EMG) electrode sites, and use non-alcoholic

wipes.
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• Set the electrode of the electromyography equipment on the 

participant’s arm muscle.

• Verify the MVC level from the computer screen by contracting the arm 

muscles.

• Ask participants to keep their backs against the chair at all times. Shoulder 

straps may be used to help maintain their posture.

• Ask the participant to hold the end effector of the haptic robot.

• Set different arm and haptic robot posture angles using a goniometer.

• Set the required distance of participant’s right hand from the sternum.

4. During each trial of the experiment

• Maintain handgrip and arm muscles stiffness with high (70~80%) or low 

(0~20%) level of MVC for each trial of the experiment.

• Ask participants to close their eyes and maintain the same arm and haptic 

robot posture during each trial of the experiment without reacting with 

perturbation force.

• Ask participants to tighten or loosen their grips for each trial.

• Require participants to keep the tightness of the grip consistent for ~10 

seconds.

• Tell participants to say “GO” to start the trial, from which time 

participants feel the robot slowly push them in a direction for 3 seconds.

• Ask participants to tell the sensed direction of interaction force at any time 

during the ~5-seconds trial. After ~5-seconds of trial, responses were 

noted as no-response for the sensitivity of small interaction force.
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5. At the end of each trial of the experiment

• Ask the participants about the direction of interaction force after each trial 

of the experiment.

• Save the participant’s response to each trial with the corresponding 

datasheet and trial number.

• Check all the postures for the next trial.

• Change the level of MVC with the same body postures and repeat a total 

of 96 trials for the experiment with different body postures and directions 

of interaction forces.

• Ask participants to clean their hands once again before leaving the 

laboratory.

• Save and close all the software windows.

• Secure the consent form and the datasheet with remarks and experimental

information for future uses.
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VERBAL INSTRUCTIONS TO THE PARTICIPANTS

Describing the two maximum voluntary contractions (MVC) in the experiment

• High level of MVC (70~80%)

This was the instance when the participants gripped the haptic robot end 

effector (the end part of the haptic robot arm that interacts with humans) 

with higher forces. Participants had to hold the haptic robot end-effector 

with a large handgrip force by contracting wrist extensors and flexor 

muscles. They applied large grip forces so that the maximum voluntary 

contraction (MVC) level of the wrist extensor and flexor muscle groups 

were 70~80% (higher grip force) on the computer screen. Participants 

could adjust their muscle’s MVC levels by expanding or contracting their 

wrists and flexor muscles using higher or lower grip forces and then the 

experimenter observed the muscles electromyography (EMG) signal 

displays on a computer screen. Additionally, under these conditions, 

participants had to stiffen their upper arm muscles by contracting the 

biceps and triceps muscles in such a way that the MVC levels for both 

muscle sets were 70~80% (High stiffness).

• Low level of MVC (0~20%)

Under these conditions, participants had to hold the end effector of the 

haptic robot with small comfortable grip forces using wrist extensor and 

flexor muscle groups. The levels of maximum voluntary contraction 

(MVC) for wrist extensor and flexor muscle groups were approximately
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0~20% (lower grip force). In addition, for these conditions’ participants 

had to loosen their upper arm bicep, and tricep muscles in such ways that 

the MVC levels for both muscle groups were approximately 0~20% (low 

stiffness).

Instructions for the experiment with a demonstration

• Participants maintain the distance from the arm to the sternum and 

maintain robot posture throughout the ~5-seconds trial.

• Participants maintain the levels of maximum voluntary contraction 

(MVC) within ranges throughout the ~5-seconds trials. For example, 

maintain 70~80% MVC for a higher level of MVC and 0~20% MVC for a 

lower level of MVC.

• Participants must always close their eyes and keep their backs against the 

chair using shoulder straps without reacting with perturbation force.

• Participants will say “GO”, and from that point, the experimenter starts the 

trial.
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Each trial ends in ~5-seconds from the point, participants say “GO”.
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EXCERPT C++ CODE FOR THE OPERATION OF THE HAPTIC ROBOT

The code can be found in the Visual Studio file FrictionlessSphere_VS2010, 

which is located at C:\OpenHaptics\Developer\3.4.0\Virtual Objects\All Virtual Objects\ 

All Virtual Objects in the computer labeled R04SONGYUN at room 203 in the 

Department of Mechanical and Aerospace Engineering at Missouri University of Science 

and Technology.

// Force on the haptic robot arm

float bx; //Fixed Robot Interaction Force in X Direction

float by; //Fixed Robot Interaction Force in Y Direction

float bz; //Fixed Robot Interaction Force in Z Direction

//2N push in Z direction

if (timer <= 320) //First ~3 seconds

{bx = 0;

by = 0;

bz = ((-1.0) *cos(2 * 3.141592*0.2*timer*0.0078125) + 1.0);

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds

{ bx = 0; 

by = 0; 

bz = 2.0;}

//2N pull in Z direction

if (timer <= 320) //First ~3 seconds
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{bx = 0; 

by = 0;

bz = -((-1.0)*cos(2 * 3.141592*0.2*timer*0.0078125) + 1.0);

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds

{bx = 0; 

by = 0; 

bz = -2.0;}

//2N push in X direction

if (timer <= 320) //First ~3 seconds

{bx = ((-1.0) *cos(2 * 3.141592*0.2*timer*0.0078125) + 1.0);

by = 0;

bz = 0;

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds 

{bx = 2.0; 

by = 0; 

bz = 0;}

//2N pull in X direction

if (timer <= 320) //First ~3 seconds

{bx = -((-1.0)*cos(2 * 3.141592*0.2*timer*0.0078125) + 1.0); 

by = 0; 

bz = 0;

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds 

{bx = -2.0;
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by = 0; 

bz = 0;}

//1N push in Z direction

if (timer <= 320) //First ~3 seconds

{bx = 0; 

by = 0;

bz = ((-0.5) *cos (2 * 3.141592*0.2*timer*0.0078125) + 0.5);

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds

{bx = 0;

by = 0;

bz = 1.0;}

//1N pull in Z direction

if (timer <= 320) //First ~3 seconds

{bx = 0; 

by = 0;

bz = -((-0.5) *cos (2 * 3.141592*0.2*timer*0.0078125) + 0.5);

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds

{bx = 0; 

by = 0; 

bz = -1.0;}

//1N push in X direction

if (timer <= 320) //First ~3 seconds

{bx = ((-0.5) *cos (2 * 3.141592*0.2*timer*0.0078125) + 0.5);
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by = 0; 

bz = 0;

70

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds 

{bx = 1.0.

by = 0; 

bz = 0;}

//1N pull in X direction

if (timer <= 320) //First ~3 seconds

{bx = -((-0.5) *cos (2 * 3.141592*0.2*timer*0.0078125) + 0.5); 

by = 0; 

bz = 0;

else if (timer > 320 && timer <=520) //Next ~3 seconds to ~5 seconds 

{bx = -1.0.

by = 0; 

bz = 0;}
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APPENDIX E.

ARDUINO CODE FOR MAXIMUM VOLUNTARY CONTRACTION (MVC) OF
ELECTROMYOGRAPHY (EMG)
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#define NUM_LED 6 // sets the maximum numbers of LEDs

#define MIN 0 // minimum posible reading tweak this value

#define MAX 100 // maximum posible reading tweak this value

const int numReadings = 10; // value to determine the size of the readings array

int reading[numReadings]; // variable to store the read value reading

int k= 0; // the index of the current reading

int total = 0; // the running total

int average = 0; // the average

byte litLeds = 0; //variable to store the read value

byte leds [] = {8, 9, 10, 11, 12, 13}; 

void setup () {

Serial.begin(9600); //begin serial communications

for (int i = 0; i < NUM_LED; i++) { //initialize LEDs as outputs 

pinMode(leds[i], OUTPUT);} // configure LED as output

for (int i = 0; i < numReadings; i++) { // initialize all the readings to 0 

reading[i] = 0;}} 

void loop () {

total = total - reading[k]; // subtract the last reading

reading[k] = analogRead(A0) ; // read from the sensor

total = total + reading[k]; // add the reading to the total

k = k + 1;

if (k >= numReadings) {

k = 0;}

// advance to the next position in the array
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average = total /numReadings; // calculate the average

for (int j = 0; j < NUM_LED; j++) { //write all LEDs Low i.e. Off

digitalWrite(leds[j], LOW);}

Serial.print("EMG Signal: \t ");

S erial.print(average); //send average to serial connection

Serial.print(" \t ")

average = constrain (average, MIN, MAX); //constrain average value within 0 to MAX 

int averagel =map (average, MIN, MAX, 0,100);

Serial.print("value of EMG Signal: \t ");

S erial.print(average 1);

Serial.print(" \t ");

litLeds = map (average, MIN, MAX, 0, NUM_LED); //Re-maps of values 

for (int k = 0; k < litLeds; k++) {

digitalWrite(leds[k], HIGH);} //write all LEDs high i.e. On

Serial.print("Light Up LED: \t ");

Serial.println(litLeds); //last value must be followed by a carriage return

delay (10); //delay time
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close all; 

clear all;

%Excel read

Filename-Calculation file l.xlsx'; 

Sheet=2; %Sheet 2

M7=xlsread (filename, Sheet);

count7=M7 ( : , 4); %time

distance_x7=M7 ( : , 5); %distance in X-direction

distance_z7=M7 ( : , 7); %distance in Z-direction

force_x7=M7 ( : , 8); %robot interaction force in X-direction

force_z7=M7 ( : , 10); %robot interaction force in Z-direction

Fx7=force_x7 (end, end); %robot interaction force in X-direction at the end of 5 sec

Fz7=force_z7 (end, end); %robot interaction force in Z-direction at the end of 5 sec

%Average values of displacements 

dx =mean (distance_x7); 

dz =mean (distance_z7);

% Displacement matrix A 

A= [dx*10A-3; dz*10A-3];

%Force matrix B and C 

B= Fx7;

C= Fz7;

%Unknown values of stiffness in B=AX

k= [inv (A'*A)*A'*B; inv (A'*A)*A'*C]
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Figure G.1. Displacement trajectory in the X-direction with respect to time for the 
application of 2N force in -X-direction with a higher level of maximum voluntary

contraction (MVC) (participant 7).

Time (sec)

Figure G.2. Displacement trajectory in the Z-direction with respect to time for the 
application of 2N force in -X-direction with a higher level of maximum voluntary

contraction (MVC) (participant 7).
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Figure G.3. Displacement trajectory in the X-direction with respect to time for the 
application of 2N force in +Z-direction with a lower level of maximum voluntary

contraction (MVC) (participant 7).

Time (sec)

Figure G.4. Displacement trajectory in the Z-direction with respect to time for the 
application of 2N force in +Z-direction with a lower level of maximum voluntary

contraction (MVC) (participant 7).
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Time (sec)

Figure G.5. Displacement trajectory in the Z-direction with respect to time for the 
application of 2N force in +Z-direction with a higher level of maximum voluntary 

contraction (MVC) (Different colors present different participants with a total of 20
participants).

Time (sec)

Figure G.6. Displacement trajectory in the X-direction with respect to time for the 
application of 1N force in +X-direction with a lower level of maximum voluntary 

contraction (MVC) (Different colors present different participants with a total of 20
participants).
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Time (sec)

Figure G.7. Trajectory of average lower level of maximum voluntary contraction (MVC)
with respect to time for participant 3.

Figure G.8. Trajectory of average higher level of maximum voluntary contraction (MVC)
with respect to time for participant 3.
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